JACS

OURNAL OF THE AMERICAN CHEMICAL SOCIETY

Subscriber access provided by ISTANBUL TEKNIK UNIV
Reactivity of Mononuclear Alkylperoxo Copper(ll)
Complex. O-O Bond Cleavage and C-H Bond Activation

Atsushi Kunishita, Hirohito Ishimaru, Satoru Nakashima, Takashi Ogura, and Shinobu Itoh
J. Am. Chem. Soc., 2008, 130 (13), 4244-4245 « DOI: 10.1021/ja800443s
Downloaded from http://pubs.acs.org on February 8, 2009

LCu(ll)-0-0-R -L( LCu(ll)-0- -o—n)

‘C—H Bond Activation I

More About This Article

Additional resources and features associated with this article are available within the HTML version:

. Supporting Information

. Links to the 4 articles that cite this article, as of the time of this article download
. Access to high resolution figures

. Links to articles and content related to this article

. Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

High quality. High impact. Journal of the American Chemical Society is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036


http://pubs.acs.org/doi/full/10.1021/ja800443s

JIAIC[S

COMMUNICATIONS

Published on Web 03/12/2008

Reactivity of Mononuclear Alkylperoxo Copper(ll) Complex. O —O Bond
Cleavage and C —H Bond Activation
Atsushi Kunishita,™ Hirohito Ishimaru,* Satoru Nakashima,* Takashi Ogura,* and Shinobu Itoh* T

Department of Chemistry, Graduate School of Science, Osaka Cigetdity, 3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka 558-8585, Japan, and Picobiology Research Center, Graduate School of Life Scieneesityrof Hyogo,
3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan

Received January 19, 2008; E-mail: shinobu@sci.osaka-cu.ac.jp

Mononuclear copper-active oxygen species play important roles 08
as reactive intermediates in many biological and industrial catalytic 465 A) | (B)
oxidation processes? For copper monooxygenases such as s
peptidylglycinea-amidating monooxygenase (PAM) and dopamine
p-monooxygenase (M), a mononuclear hydroperoxo copper(ll)
species LCu(Il->OOH, which is formally generated by the reaction

of LCu(l) and Q and subsequent addition of kbr H* + €7), has 02 795

Cm™BO,H ™,

0.4

Absorbance

been suggested as the reactive intermediate for the aliphatic Cm'®0,H

hydroxylation of the substratésMore recently, a mononuclear !

superoxo copper(ll) species LCuHPCOr, initially formed inter- 000 500 600 700 800 900 500 600 700 800 900
mediate of the reaction between LCu(l) and, @as also been Wavelength / nm Raman Shift/cm™!

proposed as a possible reactive intermediateF-urthermore, a Figure 1. (A) Spectral change for the reactionbf0.6 mM) with CmOOH
recent QM/MM calculation study has suggested that a copper(1l) (Rl-2 mMm) 'nREhe pfesencfé’c;NE(O-? (;nt')\/l) in C%%lgct);‘zo "l_C(—‘j-I_(B)

i i o H Y ) esonance Raman spectr enerate y using solid line,
oxyl radical SP(?CIeS LCu(ihOr, Wh".:h can be generat_ed b . below) and CrfO®0H (dotted line, above) obtained witlh, = 488.0 nm
bond homolysis of LCu(ll-OOH, is the most reactive species j, CH:CN at—40 °C; s denotes the solvent bands.

among the intermediatdsTo gain insight into the dioxygen
activation mechanism at the mononuclear copper active sites,agreat”) complex 2, the formation of which was confirmed by the

d:aal tOf effort htas bee_n ;na;je n mo:jjel Cht?m'St?/t;O evaluate lthefollowing experimental data. Thus, compl2exhibited a relatively
structure, spectroscopic features, and reactivity of the mononuc el tense absorption band at 465 ne= 1100 M- cm-Y) due to

- 1 i ,10-18
copper-active oxygen species: . the peroxe-to—copper(ll) charge transfer transition (LMCT)
On the other hand, alkylperoxo iron(lll) complexes LFe(Hl) together with a weak-dd band at 725 nme(= 320 M-t cm-3) as
OOR have been studied extensively in model systems to provideshown in Figure 1A. Complex2 also gave isotope-sensitive

significantly important insights into the catalytic mechanism of non- resonance Raman bands at 885, 841, 608, 529, and 485which
heme iron monooxygenas¥s?2! In this respect, studies of mono- shifted to 855, 808, 597, 524, and 474 dnupon180-substitution
nuclea_r alkylperqxo copp_er(ll) complexe_s LCUG@OR may also using Cn80O0OH instead of CRPO OH (Figure 1B). Appearance
affprd lmpr(]) rtant |nform|at|on about the d_loxygen actl\éatlon me(i_h-l of the multiple resonance Raman bands and their associated isotope
s at h ol Coppr reaton caners, Honeyer, IRt (5033135 an 1. rs s o ose epor
We herei h y ol dv of P ' | from the resonance Raman studies of the cumylperoxo copper(ll)
Ik Ie erein report the reacltlwty SLU K ofa new mgnt;)nucr:]ear complex supported by the hydrotrispyrazolylborate ligand and the
alkylperoxo copper(ll) complex, which is generated by the cumylperoxo iron(lll) complex of 6-MgTPA [tris(6-methyl-2-

reaction of copper(ll) starting materia#* and cumene hydroper- : - D325 :
. ) pyridylmethyl)amineE325 By analogy to those detailed Raman
oxide (CmOOH) in CHCN (Scheme 1). The cumylperoxo copper- studies, the bands in the 800 cthregion of2 can be assigned to

Scheme 1 mixed O—O/C—0O/C—C vibrations of the cumylperoxo group and
Ph Ph the band at 608 cnt to the Cu-O stretching vibration. Then, the
N Nf / N N( / additional 529 and 485 cm bands o2 can be assigned to-€C—C
(ne s ) omoOH/NE, L one s ] and C-C—0O deformation modes of the alkylperoxo moiéty.
Y/ \s CHLCN S/ \0 The ESR spectrum df (Figure S1,g, = 2.250,9, = 2.065,03
Mo & = 2.030,A; = 160,A, = 7, A; = 5 G), which is different from
1 that of the starting material (Figure S2), reflected a distorted
(Y =CIO,~, S = CHyCN) Me

tetragonal geometry d?, and its mononuclearity was confirmed

| h f h i ol ; by spin quantification using the ESR spectrum (99% spin remained).
(I) complex 2 has bgen ound to undergq omo ytic cleavage o Unfortunately, instability o2 precluded us from getting ESI-MS
the O-O bond and induce €H bond activation of exogenous o1~ aven at the low temperature.

substrates, providing important insight into the catalytic mechanism The cumylperoxo copper(Il) complexgradually decomposed,
of the copper monooxygenases. o obeying first-order kinetics even at40 °C (Kgec = 2.2 x 1073
_Treatm(_ent pfl with cumene hydroperoxide in the presence of 1, Figure S3) to give bis¢hydroxo)dicopper(il) complex in a
triethylamine in acetonitrile at-40 °C gave cumylperoxo copper- 64% isolated yield, where no ligand hydroxylation took place (see
t Osaka City University. Supporting Information). Notably, acetophenone (PhC(Q)®¥hs
* University of Hyogo. obtained in a 92% yield from the final reaction mixture. This clearly
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Scheme 2 18033045, 19020058, 19027048, and 19028055 for S.I.) and by
0 Global Center of Excellence (GCOE) Program (“Picobiology: Life
O)kMe NN Science at Atomic Level” to T.O.) from MEXT, Japan.
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) ° { \ Supporting Information Available: Experimental details for the
9 °\ synthetic procedures and additional spectroscopic and kinetic data. This
\ Q material is available free of charge via the Internet at http://pubs.acs.org.
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and the C-H bond activation of the exogenous substrates) of the
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to provide important insights into the catalytic mechanism of copper

monooxygenases.
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